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Abstract

A simple graph G = (V,E) is word-representable if there exists a
word w over the alphabet V such that letters x and y alternate in
w iff xy ∈ E. Word-representable graphs generalize several impor-
tant classes of graphs. A graph is word-representable iff it admits a
semi-transitive orientation. We use semi-transitive orientations to enu-
merate connected non-word-representable graphs up to the size of 11
vertices, which led to a correction of a published result. Obtaining the
enumeration results took 3 CPU years of computation.

Also, a graph is word-representable iff it is k-representable for some
k, that is, if it can be represented using k copies of each letter. The
minimum such k for a given graph is called graph’s representation
number. Our computational results in this paper not only include
distribution of k-representable graphs on at most 9 vertices, but also
have relevance to a known conjecture on these graphs. In particular,
we find a new graph on 9 vertices with high representation number.

Finally, we introduce the notion of a k-semi-transitive orientation
refining the notion of a semi-transitive orientation, and show computa-
tionally that the refinement is not equivalent to the original definition
unlike the equivalence of k-representability and word-representability.
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1 Introduction

Letters x and y alternate in a word w if after deleting in w all letters but the
copies of x and y we either obtain a word xyxy · · · (of even or odd length)
or a word yxyx · · · (of even or odd length). For example, the letters 2 and 5
alternate in the word 11245431252, while the letters 2 and 4 do not alternate
in this word. A simple graph G = (V,E) is word-representable if there exists
a word w over the alphabet V such that letters x and y alternate in w iff
xy ∈ E. By definition, w must contain each letter in V . We say that w
represents G, and that w is a word-representant.

The definition of a word-representable graph works both for vertex-
labeled and unlabeled graphs because any labeling of a graph G is equivalent
to any other labeling of G with respect to word-representability (indeed, the
letters of a word w representing G can always be renamed). For example,
the graph to the left in Figure 1 is word-representable because its labeled
version to the right in Figure 1 can be represented by 1213423. For another
example, each complete graph Kn can be represented by any permutation
π of {1, 2, . . . , n}, or by π concatenated any number of times. Also, the
empty graph En (also known as edgeless graph, or null graph) on vertices
{1, 2, . . . , n} can be represented by 12 · · · (n − 1)nn(n − 1) · · · 21, or by any
other permutation concatenated with the same permutation written in the
reverse order.
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Figure 1: An example of a word-representable graph

We note that the class of word-representable graphs is hereditary. That
is, removing a vertex v in a word-representable graph G results in a word-
representable graph G′. Indeed, if w represents G then w with v removed
represents G′.

There is a long line of research on word-representable graphs (see, e.g.
[1, 3, 4, 5, 7, 10, 12, 13, 14, 15, 18, 21, 25]) that is summarized in [19, 20].
The roots of the theory of word-representable graphs are in the study of
the celebrated Perkins semigroup in [23], which has played a central role
in semigroup theory since 1960, particularly as a source of examples and
counterexamples. However, the significance of word-representable graphs is
in the fact that they generalize several important classes of graphs such as
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3-colorable graphs, comparability graphs and circle graphs.
One of the key tools to study word-representable graphs is the notion of

a semi-transitive orientation to be defined next.

1.1 Semi-transitive orientations

The notion of a semi-transitive orientation was introduced in [14, 15], but
we follow [20, Section 4.1] to introduce it here. A graph G = (V,E) is semi-
transitive if it admits an acyclic orientation such that for any directed path
v1 → v2 → · · · → vk with vi ∈ V for all i, 1 ≤ i ≤ k, either

• there is no edge v1 → vk, or

• the edge v1 → vk is present and there are edges vi → vj for all 1 ≤ i <
j ≤ k. In other words, in this case, the (acyclic) subgraph induced by
the vertices v1, . . . , vk is transitive (with the unique source v1 and the
unique sink vk).

We call such an orientation semi-transitive. In fact, the notion of a semi-
transitive orientation is defined in [14, 15] in terms of shortcuts as follows. A
semi-cycle is the directed acyclic graph obtained by reversing the direction of
one edge of a directed cycle in which the directions form a directed path. An
acyclic digraph is a shortcut if it is induced by the vertices of a semi-cycle and
contains a pair of non-adjacent vertices. Thus, a digraph on the vertex set
{v1, . . . , vk} is a shortcut if it contains a directed path v1 → v2 → · · · → vk,
the edge v1 → vk, and it is missing an edge vi → vj for some 1 ≤ i < j ≤ k;
in particular, we must have k ≥ 4, so that any shortcut is on at least four
vertices. Clearly, this definition is just another way to introduce the notion
of a semi-transitive orientation presented above.

It is not difficult to see that all transitive (that is, comparability) graphs
are semi-transitive, and thus semi-transitive orientations are a generalization
of transitive orientations. A key theorem in the theory of word-representable
graphs is presented next.

Theorem 1 ([14, 15]). A graph G is word-representable if and only if
it admits a semi-transitive orientation (that is, if and only if G is semi-
transitive).

A corollary to Theorem 1 is the useful fact that any 3-colorable graph is
word-representable.
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1.2 Comparability graphs and permutational representation

An orientation of a graph is transitive if the presence of edges u → v and
v → z implies the presence of the edge u → z. An unoriented graph is a
comparability graph if it admits a transitive orientation. A graph G = (V,E)
is permutationally representable if it can be represented by a word of the form
p1 · · · pk where pi is a permutation.

The following theorem is an easy corollary of the fact that any partially
ordered set can be represented as intersection of linear orders, and that a
linear order can be represented by a permutation.

Theorem 2 ([23]). A graph is permutationally representable if and only if
it is a comparability graph.

Permutational representation of a graph is a special case of uniform
representation, to be discussed next.

1.3 Uniform representations

A word w is k-uniform if each letter in w occurs k times. For example,
the word 342321441231 is 3-uniform, while 43152 is a 1-uniform word (a
permutation). A graph G is k-word-representable, or k-representable for
brevity, if there exists a k-uniform word w representing it. We say that
w k-represents G. A somewhat surprising fact establishes equivalence of
word-representability and uniform word-representability:

Theorem 3 ([21]). A graph is word-representable iff it is k-representable
for some k.

Thus, in the study of word-representable graphs, word-representants can
be assumed to be uniform. Graph’s representation number is the least k such
that the graph is k-representable. For non-word-representable graphs, we
let k = ∞. It is known [15] that the upper bound on a shortest uniform
word-representant for a graph G on n vertices is essentially 2n2, that is, one
needs at most 2n copies of each letter to represent G. We let R(G) denote
G’s representation number and Rk = {G : R(G) = k}.

The class of complete graphs is clearly the class of graphs with represen-
tation number 1. Further, the class of graphs with representation number
2 is precisely the class of circle graphs, that is, the intersection graphs of
sets of chords of a circle [14]. Unlike the cases of graphs with representation
numbers 1 or 2, no characterization of graphs with representation number
3, or higher, is known. However, there is a number of interesting results
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Figure 2: Crown graphs

on graphs with representation numbers higher than 2, some of which we
mention next (see [19] for references to the original sources in relation to the
results, and for more results in this direction).

The representation number of the Petersen graph and any prism is 3.
Also, for every graph G there are infinitely many 3-representable graphs H
that contain G as a minor. Such a graph H can be obtained from G by
subdividing each edge into any number of, but at least three edges.

1.4 Graphs with high representation number

As for graphs with high representation number, only crown graphs and
graphs Gn based on them (see the definitions below) were known until this
paper; Figure 5 gives an example of another such graph. A crown graph
(also known as a cocktail party graph) Hn,n is obtained from the complete
bipartite graph Kn,n by removing a perfect matching. That is, Hn,n is ob-
tained from Kn,n by removing n edges such that each vertex was incident
to exactly one removed edge. See Figure 2 for examples of crown graphs.

By Theorem 2, Hn,n can be represented by a concatenation of permuta-
tions, because Hn,n is a comparability graph (to see this, just orient all edges
from one part to the other). In fact, Hn,n is known to require n permuta-
tions to be represented (the maximum possible amount for a comparability
graph on 2n vertices by the well known theorem on the poset dimensions by
Hiraguchi [16]). However, we can provide a shorter representation for Hn,n,
to be discussed next, which is still long (linear in n).

Note that H1,1 ∈ R2. Further, H2,2 6= K4, the complete graph on
four vertices, and thus H2,2 ∈ R2 because it cannot be represented by a
permutation but can be 2-represented by 121′2′212′1′. Also, H3,3 = C6,
a cycle graph, which belongs to R2 as is shown, e.g. in [19, 20]. Finally,
H4,4 ∈ R3 because H4,4 is a prism (it is the 3-dimensional cube). The
following theorem gives the representation numberR(Hn,n) in the remaining
cases.
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Figure 3: The graph G4 with representation number 4

Theorem 4 ([10]). If n ≥ 5, then the representation number of Hn,n is
dn/2e.

Conjecture 1. Hn,n has the highest representation number among all bi-
partite graphs on 2n vertices.

The graph Gn is obtained from a crown graph Hn,n by adding an apex
(all-adjacent vertex). See Figure 3 for the graph G4. It turns out that Gn is
the worst known word-representable graph in the sense that it requires the
maximum number of copies of each letter to be represented, as recorded in
the following theorem.

Theorem 5 ([21]). The representation number of Gn is b(2n+ 1)/2c.

It is unknown whether there exist graphs on n vertices with represen-
tation number between bn/2c and essentially 2n (the known upper bound),
but one has the following conjecture.

Conjecture 2. Gn has the highest representation number among all graphs
on 2n+ 1 vertices.

It is easy to see that Gn is a comparability graph (just make the apex to
be a source, or a sink, and orient the remaining crown graph from one part
to the other). Surprisingly, the following result on Gn does not seem to be
recorded in the literature.

Theorem 6. Gn has the highest representation number among all compa-
rability graphs on 2n+ 1 vertices.

Proof. Let G be a comparability graph on 2n+1 vertices. By Theorem 2, G
can be represented by a concatenation of permutations, which is equivalent
to representing the partially ordered set corresponding to G by intersection
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of linear orders. It is known [16] that for any finite poset P , the dimension
of P is at most half of the number of elements in P . Thus, the number of
permutations required to represent G cannot exceed n, which in turn implies
that R(G) ≤ n (dropping the requirement to represent G permutationally,
we can only shorten a word-representant). Thus, by Theorem 5, R(G) ≤
R(Gn).

1.5 Organization of the paper

Our concern in this paper is word-representation of connected graphs, be-
cause a graph is word-representable if and only if each of its connected
components is word-representable [20]. In Section 2 we explain our com-
putational approach using satisfiability module theories (SMT) to study k-
word-representable graphs and present the results obtained. In particular,
we raise some concerns about Conjecture 2, while confirming it for graphs
on at most 9 vertices. In Section 3 we present a complementary computa-
tional approach using constraint programming, enabling us count connected
non-word-representable graphs. In particular, in Section 3 we report that
using 3 years of CPU time, we found out that 64.65% of all connected graphs
on 11 vertices are non-word-representable. Another important corollary of
our results in Section 3 is the correction of the published result [19, 20] on
the number of connected non-word-representable graphs on 9 vertices (see
Table 2). In Section 4 we introduce the notion of a k-semi-transitive ori-
entation refining the notion of a semi-transitive orientation, and show that
3-semi-transitively orientable graphs are not necessarily semi-transitively
orientable. Finally, in Section 5 we suggest a few directions for further
research and experimentation.

2 Finding word-representants by SMT

How to find a k-uniform word-representation of a given graphG = (V,E)? In
this section we discuss how this can be done by means of SMT: satisfiability
modulo theories. In particular, we focus on the theory of linear inequalities,
and want to exploit the fact that current SMT solvers are strong in establish-
ing whether a Boolean formula composed from ∧, ∨, ¬ and linear inequalities
admits a solution, and if so, finds one. Here by a solution we mean a choice
for the values of the variables such that the formula yields true; if such a
solution exists the formula is called ‘satisfiable’, and the solution is called
a ‘satisfying assignment’. So, our goal is to find such a Boolean formula
for which any solution corresponds to a k-uniform word-representation of a
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given graph. For doing so, we need a way to express the unknown k-uniform
word of length kn, where n = #V is the number of vertices in the graph
in question, by a number of variables. This is done as follows. Number
the vertices from 1 to n, and represent a word w that we are looking for
by kn integer variables Ai,j , for i = 1, . . . , n, j = 1, . . . , k. The intended
meaning of Ai,j is the position of the j-th occurrence of symbol i in w, for
i = 1, . . . , n, j = 1, . . . , k. For example, for the following graph

1 2 3

the word w = 132312 is a 2-uniform word-representing the graph, and is
expressed by the values A1,1 = 1, A1,2 = 5, A2,1 = 3, A2,2 = 6, A3,1 = 2,
A3,2 = 4.

Now, our formula is the conjunction of a number of requirements on
these integer variables Ai,j that all together describe a word w representing
a given graph G = (V,E). These requirements are:

• Ai,j > 0, for all i = 1, . . . , n, j = 1, . . . , k;

• Ai,j ≤ kn, for all i = 1, . . . , n, j = 1, . . . , k;

• all Ai,j are distinct (distinctness is a feature included in SMT format);

• for all i1i2 ∈ E,

(Ai1,1 < Ai2,1 < Ai1,2 < Ai2,2 < · · · < Ai1,j < Ai2,j)

∨ (Ai2,1 < Ai1,1 < Ai2,2 < Ai1,2 < · · · < Ai2,j < Ai1,j);

• for all i1i2 6∈ E,

¬(Ai1,1 < Ai2,1 < Ai1,2 < Ai2,2 < · · · < Ai1,j < Ai2,j)

∧ ¬(Ai2,1 < Ai1,1 < Ai2,2 < Ai1,2 < · · · < Ai2,j < Ai1,j).

.

So, for our graph above, the formula reads

A1,1 > 0 ∧A1,2 > 0 ∧A2,1 > 0 ∧A2,2 > 0 ∧A3,1 > 0 ∧A3,2 > 0 ∧

A1,1 ≤ 6 ∧A1,2 ≤ 6 ∧A2,1 ≤ 6 ∧A2,2 ≤ 6 ∧A3,1 ≤ 6 ∧A3,2 ≤ 6 ∧
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distinct(A1,1, A1,2, A2,1, A2,2, A3,1, A3,2) ∧

((A1,1 < A2,1 < A1,2 < A2,2) ∨ (A2,1 < A1,1 < A2,2 < A1,2)) ∧

((A2,1 < A3,1 < A2,2 < A3,2) ∨ (A3,1 < A2,1 < A3,2 < A2,2)) ∧

¬(A1,1 < A3,1 < A1,2 < A3,2) ∧ ¬(A3,1 < A1,1 < A3,2 < A1,2)).

For the values A1,1 = 1, A1,2 = 5, A2,1 = 3, A2,2 = 6, A3,1 = 2, A3,2 = 4 this
formula yields true, as is found by the SMT solver Z3, yielding the 2-uniform
word-representation w = 132312 of the graph.

Up to syntactic details (boolean operators are written as ‘not’, ‘and’,
‘or’, all operators are written in prefix notation), it is exactly this formula
on which an SMT solver like Z3 [29] or YICES [28] can be applied, yielding
‘satisfiable’, and the corresponding satisfying assignment gives our values of
Ai,j .

We wrote a tool doing this in a way where the internal use of an SMT
solver is hidden for the user. It is available on

http://www.win.tue.nl/∼hzantema/reprnr.html.
The tool reads a graph and then tries to find a k-representation for k =
2, 3, 4, . . . by building the formula as presented above and then calling an
SMT solver. As soon as a satisfying assignment is found, the computa-
tion stops and the resulting values are transformed to the corresponding
k-uniform word-representation, which is returned to the user. The tool is
available both for Windows (calling the SMT solver Z3) and for Linux (call-
ing the SMT solver YICES), together with several examples. Typically, for
graphs like the cube, the prism on the triangle, Petersen graph, and G4 (see
below), the k-uniform word representing the graph is found in a second or
less.

As this tool works quite quickly, it is feasible to run it on a great number
of graphs. In particular, we ran it on all connected graphs on ≤ 9 vertices
as they are available from

http://users.cecs.anu.edu.au/∼bdm/data/graphs.html.
The results are listed in Table 1, where ‘representation number > 4’ means
that no 4-representation exists, so either the representation number is > 4,
or the graph is not word-representable (for which the representation number
is ∞). However, as these numbers coincide with the respective numbers in
Table 2, we conclude that only the latter occurs, and no word-representable
graph exists on ≤ 9 vertices with representation number > 4.

The single graph on 6 vertices with representation number 3 is the prism
on the triangle; the single non-word-representable graph on 6 vertices is the

9
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# of # of conn. representation number
vertices graphs 1 2 3 4 > 4

3 2 1 1 0 0 0

4 6 1 5 0 0 0

5 21 1 20 0 0 0

6 112 1 109 1 0 1

7 853 1 788 39 0 25

8 11,117 1 8335 1852 0 929

9 261,080 1 117,282 88,838 2 54,957

Table 1: Distribution of k-representable graphs on at most 9 vertices

Figure 4: The 39 graphs on 7 vertices with representation number 3
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Figure 5: The graph J4 with representation number 4. It is shown in two
ways to show different symmetries.

wheel on 5 vertices. The 39 graphs on 7 vertices with representation number
3 are given in Figure 4.

The most surprising result in Table 1 is the two graphs on 9 vertices
with representation number 4. One of them was known before, namely, G4

presented in Figure 3, and it was believed to be the only graph on 9 vertices
with representation number 4. However, our computations have shown the
existence of another such graph, namely the graph J4 shown in Figure 5.
We note that J4 is a non-comparability graph, which is easy to check, while
G4 is. This may suggest that Conjecture 2 might not be true, since there are
many more non-comparability graphs than comparability graphs, and one
may expect finding those of them that have higher representation number
than Gn. Having said that, we were not able to extend the construction of
J4 (in a natural way) to more than 9 vertices.

3 Counting non-word-representable graphs using
constraint programming

Similarly to our studies of k-word-representable graphs, we performed large
computations using constraint programming [27] to count the numbers of
non-word-representable connected graphs with up to 11 vertices. To do this,
we used the constraint modelling tool Savile Row [26] and the constraint
solver Minion [8]. These tools have been used successfully in the past to
obtain novel enumerations of a variety of combinatorial structures including
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semigroups [6], equidistant frequency permutation arrays [17], and S-crucial
and bicrucial permutations with respect to squares [9].

Our starting point was to model the concept of word-representability in
a way similar to that when using SMT in Section 2. However, here we use
Theorem 1 showing the equivalence between word-representability and semi-
transitivity, so that semi-transitive orientations are now used to determine
whether or not a graph is word-representable. As with SMT in Section 4,
we use a boolean uij to indicate an undirected edge between i and j, and
a boolean eij to indicate a directed edge from i to j. Moreover, we use a
boolean tij to indicate the transitive closure of e, which is true when there
is a path of directed edges from i to j. Most of the model expresses the ap-
propriate linkages between these sets of variables. For example, constraints
in the model express that t is the transitive closure of e. The acyclicity of
e is elegantly expressed by each tii being false, i.e. no vertex being reach-
able from itself in the transitive closure. The final constraint expresses the
property of semi-transitivity. This states that if two vertices are connected
by a directed path, and there is an undirected edge between them, then all
pairs of intermediate vertices must have a directed edge between them in
the appropriate direction.

The model we used is shown in full in Figure 6. There are three points
of detail about the model which deserve mention. First, this model nei-
ther check graphs for being connected, nor for being non-isomorphic to each
other. This is not easy to do very efficiently in constraints, so instead we
constructed a list of all connected undirected graphs with no two graphs be-
ing isomorphic, using the program geng [24]. Second, we originally modelled
an undirected graph as an input to the constraint model, which was then
checked for word-representability. However, this proved to be very inefficient
as the vast majority of the constraint modelling processes was the same for
each graph. Instead, we provide the constraint model with a list of graphs
produced by geng and insist that the solution is one of those graphs. This
is achieved in constraints using the ‘table’ constraint, which can be propa-
gated very efficiently [2]. As well as saving work at the modelling stage, it
also provides the capability to save work at the solving stage. For exam-
ple, if all graphs remaining for consideration contain a certain undirected
edge ij, the variable uij can be set true immediately. A major advantage
of this approach is that it makes it particularly easy to parallelise the enu-
meration process, simply by splitting the list of distinct connected graphs
into appropriately sized chunks. Finally, the line ‘branching on [u]’ tells
the constraint tools that we only wish to solve the problem once for each
different assignment of u, i.e. for each undirected graph. Without this,
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# of # of conn. All non-word-representable graphs
vert. graphs Total % of cand. Time Min. Non-Min.

6 112 1 0.89% 3.0s 1 0

7 853 25 2.93% 4.0s 10 15

8 11,117 929 8.36% 26s 47 882

9 261,080 54,957 21.05% 29m 179 54,778

10 11,716,571 4,880,093 41.65% 74h - -

11 1,006,690,565 650,856,040 64.65% 1,100d - -

Table 2: The numbers of all non-word-representable graphs, as well as the
numbers of such graphs, called non-minimal, that include smaller non-word-
representable subgraphs, and those, called minimal, that do not. The per-
centage of non-word-representable graphs to all graphs is given to 2 deci-
mal places. Times indicate the CPU time used to compute all non-word-
representable graphs, to 2 significant figures in an appropriate unit (seconds,
minutes, hours, days). The time to count minimal/non-minimal graphs is
not shown.

any graph admitting more than one semi-transitive orientation would be
repeated in the output, wasting both search time and necessitating extra
work in removing duplicates.

Results of our computations are shown in Table 2. Note that in one
case numbers are different to those previously reported. The true number of
connected non-word-representable graphs on 9 vertices is 54,957, not 68,545
as was reported in [19, 20] (which was a copy/paste mistake).

It is also interesting to identify minimal non-word-representable graphs
of each size, i.e. graphs containing no non-word-representable strict induced
subgraphs. To do this, we stored all non-word-representable graphs of each
size. After computing with geng all possible graphs with one more vertex, we
eliminate graphs containing one of the stored graphs as an induced subgraph.
We did this with a simple constraint model which tries to find a mapping
from the vertices of the induced subgraph to the vertices of the larger graph,
and if successful discards the larger graph from consideration. This enabled
us to count all minimal non-word-representable graphs of each size up to 9,
which is shown in Table 2. The filtering process we used was too inefficient
to complete the cases n ≥ 10.
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language ESSENCE’ 1.0

given n : int

given triangle_table : matrix indexed by [int(1..numgraphs),int(1..(n-1)*(n)/2)]

of int(0,1)

letting LETTER be domain int(1..n)

find upper_triangle : matrix indexed by [int(1..((n-1)*n/2))] of int(0,1)

find u : matrix indexed by [LETTER, LETTER] of int(0,1) $ graph undirected edges

find e : matrix indexed by [LETTER, LETTER] of int(0,1) $ graph directed edges

find t : matrix indexed by [LETTER, LETTER] of int(0,1) $ transitive closure

branching on [u]

such that

$ the diagonal is empty

forAll i : LETTER . u[i,i] = 0,

$ the graph is undirected

forAll i,j : LETTER . u[i,j] = u[j,i],

$ linking u and the upper triangle

forAll i,j : LETTER . i < j -> (u[i,j] = upper_triangle[n*(i-1)+j-((i+1)*i/2)]),

$ the graph is one of the preprocessed graphs

table(upper_triangle,triangle_table),

$ linking e and u

forAll i,j : LETTER . u[i,j] = 0 -> e[i,j]=0,

forAll i,j : LETTER . u[i,j] = 1 -> ((e[i,j]=1) \/ e[j,i]=1),

$ directed graph is irreflexive and antisymmetric

forAll i : LETTER . e[i,i] = 0,

forAll i,j : LETTER . i < j -> ( (e[i,j] = 0) \/ (e[j,i] = 0)),

$ t is transitive closure of e and is acyclic

forAll i,j : LETTER . (e[i,j] = 1) -> (t[i,j] = 1),

forAll i,j,k : LETTER . ( (t[i,j] = 1) /\ (t[j,k] = 1)) -> (t[i,k] = 1),

forAll i : LETTER . t[i,i] = 0,

$ semi transitive ordering

forAll i,k: LETTER .

((t[i,k] = 1) /\ (u[i,k] = 1)) ->

((ordering[i,k] = 1) /\

forAll j : LETTER .

((t[i,j]=1 /\ t[j,k]=1) -> (e[i,j] = 1 /\ e[j,k]=1)))

Figure 6: Essence Prime model of word-representable graphs
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4 Refining semi-transitivity

The notion of k-word-representability refines that of word-representability.
However, Theorem 3 shows that these notions are equivalent. Still, k-
word-representability plays a very important role in the theory of word-
representable graphs.

Thinking along similar lines, we introduce the potentially useful notion
of a k-semi-transitive orientation refining semi-transitive orientations linked
to word-representability via Theorem 1. Recall the definition of a shortcut in
Section 1.1. An undirected graph is k-semi-transitively oriented, or k-semi-
transitive for brevity, if it admits an acyclic orientation avoiding shortcuts
of length k (longer shortcuts are allowed). In particular, an undirected
graph is 3-semi-transitive if it admits an acyclic orientation such that for
any directed path v0 → v1 → v2 → v3 of length 3 for which v0 → v3 is an
edge, also v0 → v2 and v1 → v3 are edges.

The notion of 3-semi-transitivity is easily expressed in SMT. Writing uij
for the boolean expressing whether there is an undirected edge from i to j,
and eij for the boolean expressing whether there is a directed edge from i
to j, the connection between directed and undirected graph is expressed by

uij ⇔ (eij ∨ eji)

for all vertices i, j. Being acyclic is expressed by the existence of a weight
function w such that

eij ⇒ w(i) > w(j)

for all vertices i, j. Finally, the path condition is expressed by

((∃k,m : ((eik ∧ ejk) ∨ (eki ∧ ekj)) ∧ eim ∧ emj) ⇒ eij

for all vertices i, j, where ∃ runs over the vertices. For a given undirected
graph, we take the conjunction of the above requirements and for all i, j
we add ∧uij if there is an edge from i to j, and add ∧¬uij otherwise.
Then, by construction, the resulting formula is satisfiable if and only if
the undirected graph is 3-semi-transitive. We built these formulas for all
connected graphs on ≤ 9 vertices, and applied Z3 on them. As a result, we
determined that for ≤ 8 vertices a graph is 3-semi-transitive if and only if it
is word-representable. In contrast, for 9 vertices we determined that there
are exactly 4 graphs that are 3-semi-transitive but not word-representable,
and hence not semi-transitive. They are depicted in Figure 7. An SMT
encoding of checking semi-transitivity is also included in the tool linked to
in Section 2.

15



Figure 7: 3-semi-transitively, but not semi-transitively orientable graphs

# of # of conn. All non-3-semi-transitively orientable graphs
vert. graphs Total % of cand. Time Minimal Non-Minimal

6 112 1 0.89% 4.0s 1 0

7 853 25 2.93% 6.0s 10 15

8 11,117 929 8.36% 80s 47 882

9 261,080 54,953 21.05% 2.8h 175 54,778

10 11,716,571 4,879,508 41.65% 22d - -

Table 3: Numbers of (minimal) non-3-semi-transitively orientable graphs
and the CPU time to obtain them. The time to count minimal/non-minimal
graphs is not shown.

Using a similar encoding of the problem, these computational results
were extended to finding the number of all 3-semi-transitively orientable
graphs on up to 10 vertices using the constraint programming methods de-
scribed in Section 3. We refer to Table 3 where these results are recorded
along with the number of minimal (not containing smaller such graphs as
induced subgraphs) non-3-semi-transitively orientable graphs. Comparing
Tables 2 and 3, we see that there are 585 3-semi-transitively orientable, but
not semi-transitively orientable graphs on 10 vertices.

Thus, the notions of k-semi-transitively orientable graphs and semi-
transitively orientable graphs are not equivalent.

5 Concluding remarks

We conclude by suggesting a few directions of further research relevant to
our paper. In each of these directions one can use the computational ap-
proaches/tools developed by us to support finding new results. In particular,
one could try to use our tools to take all bipartite graphs and to test Con-
jecture 1 for larger graphs.
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It would be interesting to extend the construction of J4 in Figure 5 (in
a natural way) to more than 9 vertices so that new graphs with high repre-
sentation numbers would be obtained. This may help to prove or disprove
Conjecture 2.

Also, an intriguing question is whether or not there exists k such that
semi-transitive orientability is equivalent to k-semi-transitively orientability.
If such a k exists, it must be > 3 (e.g. because of the graphs in Figure 7). In
either case, to study the properties of k-semi-transitively orientable graphs
(at least 3-semi-transitively orientable graphs) is an interesting and chal-
lenging direction of research. Many questions that can be asked about
word-representable graphs [19, 20] can be asked about k-semi-transitively
orientable graphs, e.g. how many such graphs there are, or how we can
describe these graphs in terms of forbidden subgraphs, etc, etc.

Finally, even though it seems that our current methods would not be
able to extend the results of Table 2 to 12 vertices, it is interesting if it
would be ever possible to achieve.
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